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Abstract

We describe the coupling of the Goddard Institute for Space Studies (GISS) general

circulation model (GCM) to an online sulfur chemistry model and source models for organic matter

and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number

concentration is diagnosed empirically from field experiment datasets over land and ocean that

observe droplet number and all three aerosol types simultaneously; corrections are made for implied

variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate

variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud

optical thickness and microphysical process rates. We calculate the aerosol indirect effect by

differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day

vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects

are explored. We test the sensitivity of our results to cloud parameterization assumptions that

control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol

scavenging rate, each of which feeds back significantly on the model aerosol burden. The global

mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m "2 in our

simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with

low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic

aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this

dependence on the background aerosol, model diagnostics such as albedo-particle size correlations

and column cloud susceptibility, for which satellite validation products are available, are not good

predictors of the resulting indirect effect.



I. Introduction

The greatest uncertainty in the assessment of climate forcing by anthropogenic aerosols is

their effect on clouds, referred to as the aerosol indirect effect (AIE). For a given cloud liquid water

content (LWC), an increase in the cloud droplet number concentration (N) implies a decrease in the

effective radius (rcfr), thus increasing the cloud reflectivity (Twomey 1977); this is known as the

first or radiative indirect effect (RIE). Several studies have attempted to observe the Twomey effect

in clouds modified by ship tracks (Coakley et al. 1987; Radke et al. 1989; King et al. 1993; Coakley

et al. 2000; Durkee et al. 2000) or continental sources of pollution (Saxena and Menon 1999;

Brenguier et al. 2000). The second or microphysical indirect effect (MIE) is based on the idea that

decreasing the mean droplet size in the presence of enhanced aerosols decreases the cloud

precipitation efficiency, producing clouds with a larger LWC and longer lifetime (Albrecht 1989;

Pincus and Baker 1994). Recent results from the Monterey Area Ship Track Experiment (MAST;

Ferek et al. 2000) and Tropical Rainfall Measuring Mission (Rosenfeld 2000) provide anecdotal

evidence that anthropogenically forced decreases in reff can significantly alter the liquid water path

(LWP) and suppress rainfall. Observations of aerosol-induced changes in cloud lifetime have not

been reported, however.

Observational assessment of both indirect effects is problematic because (a) direct

measurements of aerosols and cloud properties are localized in space and time and cannot be used

to infer global radiative impacts, and (b) it is difficult to isolate the aerosol effect on clouds from the

natural variability in refr and LWC caused by changes in the cloud thermodynamical structure and

the dynamics. Satellite data sets have begun to provide some cloud-top or vertically integrated

measures of relevant cloud properties (Han et al. 1994, 1998a, b, 2000; Kaufman and Fraser 1997),

but by themselves do not give a measure of the radiative impact of aerosols on clouds.



Furthermore,global climatologies of aerosol properties exist only over ocean, provide only the

column optical thickness, do not differentiate among aerosol types, and have large uncertainties due

to contamination by thin clouds (Stowe et al. 1997). Thus, the only way to estimate the global AIE

is by combining model simulations with satellite observational constraints (cf. Boucher, 1995;

Kogan et al. 1997). Unfortunately, existing GCM simulations of the AIE span an unacceptably

broad range, from near 0 to -5 W m 2 (Jones et al. 1994; Boucher and Lohmann 1995; Chuang et al.

1997; Lohmann and Feichter 1997; Rotstayn 1999; Kiehl et al. 2000; Ghan et al. 2001a). No

observational constraints have been demonstrated to limit this range. To date, all that can be said is

that the larger AIE predictions are less likely to be correct in light of the observed global

temperature increase that has accompanied an accumulated anthropogenic greenhouse gas forcing

of only 2.5 W m -2 (Hansen et al. 2000).

Most previous GCM research on the AIE has emphasized the uncertainties associated with

determining the aerosol distribution and its effect on cloud properties. GCMs take two different

approaches to determine cloud droplet number concentration. Some models predict N from aerosol

chemical and microphysical properties by means of a sophisticated aerosol nucleation and growth

model (Chuang et al. 1997; Lohmann et al. 1999; Ghan et al. 2001a, b), thereby making it possible

for N to be a prognostic variable. This has the appeal of being physically based, but it requires

underlying assumptions about (a) the unresolved small-scale turbulent updraft velocity, a quantity

that is especially difficult to predict within clouds, and (b) the efficiency with which different

aerosol types nucleate cloud droplets, which depends on details of the aerosol composition and the

unknown extent of internal vs. external mixing. Other models use a simple empirical diagnostic

approach, directly parameterizing N as a function of either aerosol mass or aerosol number

concentration based on field observations (Jones et al. 1994; Lohmann et al. 1997; Rotstayn 1999;

Kiehl et al. 2000). This bypasses the difficult physics of cloud droplet formation, and by using
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sulfateasaproxy for all aerosols,thediagnosticapproachin principle allowsfor the indirect effect

of all aerosolsin amodelthatonly explicitly simulatesthesulfatedistribution. Thedisadvantageof

the diagnosticapproachis that it isbasedon limited informationfrom local or regionalfield studies

that sample a specific mix of aerosol types in specific meteorological conditions, which

compromisestheir usefulnessin global applications. SomemodelsdetermineN diagnostically

usingmonthlymeansulfatefieldscomputedoffline; in suchmodelstheaerosolaffectsthecloud but

thecloudis notallowedto feedbackonthe aerosoldistribution.

In both approachesa major additionaluncertaintyconcernsnatural sourcesof aerosolsor

their precursors. In this regard,evaluationof the AIE is much more difficult than for climate

forcing due to greenhousegas emissions. For greenhousegas forcing the pre-industrial

concentrationlevels are well known, and anthropogenicincreasesthus far have not yet even

doubledthe effectivebackgroundconcentration.For aerosols,on the otherhand,thereis probably

no vegetatedcontinentallocationanywherethat retainsapristineenvironment,andthusthereis no

way to reliably determinethepre-industrialcontinentalbackgroundaerosollevel. Over oceans,the

naturalsulfatecontributionfrom DMS emissionsis still uncertain(Charlsonet al. 1987;Kettle and

Andreae2000)and therole of sea-saltdependsin a complexfashiononmeteorologicalconditions

and the coincident presenceof sulfate (Ghan et al. 1998; O'Dowd et al. 1999). Furthermore,

anthropogenicaerosol increasesto date dwarf the backgroundlevels near and downwind of

pollution sources.Thus,consideringthat the susceptibilityof cloudsis greatestin relatively clean

conditions(Platnick andTwomey 1994),the uncertaintyin the backgroundaerosolconcentration

itself introducessignificantvariability in thesimulatedpresent-dayAIE (Chuanget al. 1997;Kiehl

et al.2000).

By comparison,much lessattentionhasbeenpaid to the effect of cloud parameterization

assumptionson thesimulatedAIE. Lohmannet al. (1997),Rotstayn(1999)andGhanet al. (2001b)



have explored the sensitivity of the MIE to different autoconversionand cloud cover

parameterizations.Different autoconversionschemeshave markedlydifferent dependenceof rain

formationon N andLWC, andare intendedfor useon the cloud scale,ratherthan the GCM grid

scale;but subgridvariability can potentially have a great impact on microphysicalprocessrates

(Pincusand Klein 2000; Rotstayn2000). Cloud formation schemesin GCMs arenot yet either

physically-basedor even empirical (becausesubgrid-scalevertical velocity effects on cloud

formationareusually not represented),so the effect of initial cloud formation assumptionson the

AIE canpotentiallyvary widely. Maceet al. (1998)highlight thepossibility of usingcloud radar

from polar orbiting satellites for global scale model vertical cloud distribution comparison.

However, to date, little attentionhasbeenpaid to the ability of GCMs to simulatethe detailed

vertical distribution of cloudinessin the lower troposphere,despite the fact that the aerosol

concentrationdecreasessharplyabovethesurfaceandtheAIE dependson thecolocationof aerosol

andcloud. Coakleyet al. (2000) foundthat the presenceor absenceof ship tracksin MAST data

was quite sensitiveto the relativeheightsof the aerosollayer andthe cloud top, suggestingthat

thesedetailsmightbe importantfor simulationof theAIE. Thefeedbackof cloudprocesseson the

aerosoldistribution,e.g.,via the in-cloudoxidationsourceandwet depositionsink, hasbeenmostly

ignored, although Lohmann et al. (1997) commenton the effect of different cloud formation

parameterizationson theresultingaerosolfield.

In this paperwe describeinitial resultsfrom a versionof the GoddardInstitute for Space

Studies(GISS)GCM that hasbeencoupledto anaerosolsource/chemistrymodel, with particular

emphasison how modelcloudparameterizationassumptionsinfluencethesimulatedAIE andhow

existingobservationsdo or donot constrainAIE estimates.The basiccoupledmodelstructureand

designof sensitivity experimentsare describedin Sections 2 and 3, respectively. Resulting

distributionsof theaerosolconcentrationandtheAIE for the different simulationsaredescribedin
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Section4. In Section5 weevaluateour resultsagainstvarioussatellitediagnosticquantities. We

discusstheimplicationsof ourwork andpossiblefuturedirectionsof researchin Section6.

2. Model Description

(a) General circulation model

We use the GISS Model II' GCM (Hansen et al. 1997), a gridpoint model with 4 ° x 5°

horizontal resolution and 9 vertical sigma coordinate levels and a dynamical top at 10 mb. This

GCM was developed from the GISS GCM Model II (Hansen et al. 1983), with several

improvements: notably a new prognostic cloud water scheme for stratiform clouds (Del Genio et al.

1996), improved mass flux cumulus parameterization (Del Genio and Yao 1993), a second-order

closure planetary boundary layer, and improved ground hydrology (Rosenzweig and Abramopoulos

1997). Stratiform cloud generation is relative humidity (RH) dependent, based on the approach of

Sundqvist et al. (1989), but also includes a dependence on moist stability. Clouds form when RH

exceeds a threshold that is specified for all model levels except for the lowest layer. In the lowest

layer the threshold RH is calculated as the RH for which a parcel would saturate if lifted from the

bottom to the top of the layer. The GCM allows for fractional cloudiness in the vertical as well as

horizontal, i.e., a cloud physical thickness that is less than the GCM layer thickness, depending on

stability. Microphysical sinks for liquid water include autoconversion, evaporation, cloud-top

entrainment, accretion, and the Bergeron-Findeisen process. All clouds form as liquid for

temperatures > -4°C over oceans and -10°C over land, and as ice for temperatures < -40°C. In

between these temperatures, a probability function is used for formation of ice (Del Genio et al.

1996). A fixed value of N (0.06 cm -3) is used for all ice clouds. The cumulus parameterization uses

a cloud base neutral buoyancy mass flux closure and includes convective downdrafts, entraining

• and non-entraining plumes, detrainment of condensate into anvils, and evaporation of precipitation.



The radiation schemeincludes all important radiatively active species;it usesthe correlatedk-

distribution approachfor gaseousabsorptionand a singleGausspoint adaptationof the doubling

andaddingmethodfor multiple scattering.

(b)Aerosol model

We simulate the indirect effects associated with sulfate, organic carbon and sea-salt

aerosols. Aerosol distributions are calculated online and are fully interactive with the GCM

dynamics and physics. Details of included aerosols are listed below and are summarized in Table 1.

(i) Sulfate

The sulfate chemistry model (Koch et al. 1999) includes SO2, sulfate, dimethylsulfide

(DMS) and H202 as prognostic species. It uses a resistance in series dry deposition scheme and has

a wet deposition and in-cloud chemistry scheme that is coupled to the GCM cloud schemes. For

large-scale clouds, the autoconversion rates and the grid box cloud fraction are used to calculate the

first-order loss for precipitation scavenging. For moist convective clouds, all the dissolved tracers

(in the updraft) are removed with the rainwater except for those that are evaporated or detrained.

Below-cloud scavenging and evaporation of gases are also included. A detailed comparison of the

simulated sulfate distribution with observations is presented in Koch et al. (1999).

(ii) Organic carbon

The carbonaceous aerosol model of Koch (2001) includes both absorptive black carbon and

the more refractive and more soluble organic carbon (OC); (we consider only the latter here). The

OC emissions for biomass burning and industry are from Liousse et al. (1996). As in Liousse et al.

(1996), we use the organic matter (OM), where OM=l.3 x OC to account for the presence of non-

carbon elements. The emissions for OC are highly uncertain and measurements available for model

validation are extremely sparse, with few data sets spanning a full year. Koch (2001) found the
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total model bias againstobservationsto be low; however,the scatterwas high, with the model

typically within afactor of 10of observations.The sourcefor naturalOM emissionsfrom terpenes

is from Guentheret al. (1995). A 10%yield rateof OM from terpenesis assumed,which is higher

thanthatusedin Liousseet al. (1996)but atthe low endof that in AndreaeandCrutzen(1997).

(iii) Sea-salt

Sea-salt concentrations in 6 size bins are from Gong et al. (1997a) who used the Monahan et

al. (1986) source and the NCAR Climate System Model (CSM) to treat sea-salt dependence on

wind speed. In this study, we input monthly sea-salt concentrations from the first 4 bins (sizes:

0.03-0.25 ILrn, 0.25-0.50 l.tm, 0.50-1.0 I.tm and 1.0-2.0 gm), since modeling (Ghan et al. 1998) and

observational studies (O'Dowd et al. 1999) indicate that the film and jet modes are most important

(in terms of sea-salt number and surface area concentrations, respectively) in modifying the sulfate

distribution. Sea-salt is assumed to be fully soluble for wet deposition purposes. In addition to

removal by wet and (resistance-in-series) dry deposition, gravitation settling is included.

(c) Aerosol direct effect

Although the direct aerosol radiative effect is treated, we restrict our discussion to the AIE

since Koch et al. (1999) and Koch (2001) discuss the direct effect. The 0.55 l.tm aerosol optical

thickness is obtained from the product of the aerosol mass and the specific extinction cross-section

as in Charlson et al. (1984) and aerosol interaction with radiation is treated via Mie scattering

theory. The effect of relative humidity on optical thickness is only applied for sulfate aerosols. At

present, the water uptake rate for sea-salt and organic carbon aerosols are not treated because of the

uncertainty in the uptake rate. Instead we use a specific extinction that is applicable for an average

relative humidity (Koch 2001), but would probably lead to an underestimation of optical thickness

at high relative humidities (> 90%) (Lacis 2001, private communication).



(d) Aerosol-cloud interaction

We use a simple diagnostic approach to calculate N from aerosol mass based on field

observations. However, we attempt to partly address the limitations of this approach by developing

multiple regressions against all three simulated aerosol types (rather than assuming sulfate to be a

universal proxy) and by including an empirical correction factor that mimics the effect of varying

cloud turbulence strength on N.

Field data from Leaitch et al. (1996) in the NE Atlantic and from Borys et al. (1998) in

Tenerife were used to develop a multiple regression relationship between N, sulfate, OM and sea-

salt. Since OM measurements were not reported in Borys et al., we parameterize OM as a function

of sulfate using data from Tenerife obtained during the Aerosol Characterization Experiment (ACE-

2) (Putaud et al. 2000). This assumption is based on field measurements (Liu et al. 1996;

Matsumoto et al. 1997; Putaud et al. 2000) that indicate a positive correlation between sulfate and

OM. Since the data were obtained from the same location at similar times of the year, albeit from

different experiments, variability in the ratio of OM to sulfate should not be an important factor.

The Leaitch et al. data set did not have complete measurements of all species of OM and therefore

could underestimate the actual OM for the NE Atlantic (Leaitch 2000, private communication).

Identical regressions are applied over land and ocean, except that sea-salt is included only in the

latter. The resulting multiple regression relationships to predict N for land, Nt_d, and ocean, Noc,_,

are"

NLand = 10 {2.41 + 0.50 log (Sulfate) + 0.13 Log (OM) }

Nc_,an = 10 12.41 + 0.50 log (Sulfate) + 0.13 Log (OM) +0.05 Log (Sea-salt) }

(la)

(lb)

where sulfate, OM and sea-salt are the mass concentrations in I.tg m 3 and N is in cm "3. N predicted

using the above equations is more sensitive to changes in sulfate than to OM due to the higher slope

for sulfates, however, the AIE has not been evaluated separately for either sulfates or OM alone.



Theseregressionsdiffer from the commonly usedempirical relationshipsgiven in Boucher and

Lohmann (1995) in their modeling study on the AIE. Their relationships were based on

simultaneouslymeasuredsulfateandeitherCCN or N. Whenonly CCN datawere available,they

assumedthat the measuredCCN concentrationusedwas thesameasN in deriving their N-sulfate

relationships.This assumptionis not true, asundervarying supersaturations,updraft speeds,etc.,

theempiricalrelationshipbetweenCCN andN is non-linear(MenonandSaxena1998,Sniderand

Brenguier2000). The advantageof relatingN with aerosolmassas given in (la) and (lb) is that

these implicitly take into account the physics (updraft velocity, size spectra, growth rate,

supersaturationprofiles, etc.) that actually determinesN, while explicitly representingthe

contributionof thethreedifferentaerosolspeciesallowsusto moreconfidentlyapply theregression

to otherregionswith differentmixesof aerosoltypes.

Leaitch et al. (1996) havehighlightedthe role of turbulencein modifying N for a given

aerosolconcentration.Higherupdraftspeedsincreasetheactivationof aerosolparticles,which thus

increasesN. Under stableconditions,N is reducedbecausethe lower updraft speedsproduce

supersaturationsthat arenot high enoughto activatesmallersize particles. We use the GCM's

parameterizationof cloud top entrainment(CTE) asan indicatorof within-cloud turbulence. The

parameterizedCTE mixing dependson the moist staticenergyjump acrossthecloud top interface

and on the total water contentin the cloud (Del Genioet al. 1996). To mimic the Leaitch et al.

observations,we scaleN aspredictedby (la) and(lb) by afactor thatrangesfrom 1.5 in high CTE

(unstable,strong turbulence)conditionsto 0.5 in zeroCTE (extremelystable,weak turbulence)

conditions.

Given N, the volume-weightedmeancloud droplet radius,rvol,is determinedas:rvol= {(3

LWC)/(4 _ Pl N)} 1/3, where Pl is liquid water density. This value is applied to determine aerosol

effects on cloud microphysical processes (autoconversion, cloud evaporation). The reff needed to



compute cloud radiative properties is obtained from rvol assuminga standard gamma size

distributionwith aneffectivevarianceof 0.2 givenasreff= 1.281:vow.Cloudoptical depth('0 is then

evaluatedas:I:= (1.5LWP)/(pl reff).For a given 'r and r_ff, cloud radiative properties are computed

using the spectral dependence predicted by Mie theory (Hansen and Travis 1974). Aerosols are only

allowed to affect liquid-phase clouds, so the longwave contribution to AIE is small in all the

experiments.

3. Experimental Setup

The AIE is defined as the difference in the net cloud radiative forcing between simulations

that use present-day (PD) (natural plus anthropogenic) aerosols and simulations that use pre-

industrial (PI) (natural) aerosols. Baseline model runs are forced by climatological sea surface

temperature fields for the period 1978-1998 and are carried out for six years, with the results based

on the final five-year averages. For sensitivity studies, shorter model runs for three years (with

results based on two-year averages) are carried out. We examine 5 (PD, PI) pairs of simulations

(Table 2), defined as follows:

(a) CTRL-R: This run uses the standard model configuration described in the previous section and

accounts only for the RIE. In this run, the autoconversion rate (Q) is an increasing function of the

cloud LWC with no dependence on N except for specified land-ocean differences in efficiency (Del

Genio et al. 1996).

(b) NEWCLD-R: In common with most GCMs, the GISS model tends to overpredict cloudiness in

the lowest model layer. For most applications this is not a serious defect, but given the sharp

decrease in aerosol concentration away from the surface, even small errors in cloud altitude can
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influencethesimulatedAIE. Thefrequencyof occurrenceof low-level cloud tops in GCM layers

1,2 and3 (toppressure= 934,854 and720hPa,respectively)in CTRL-R is 36%,30% and34%,

respectively. Data from the InternationalSatelliteCloudClimatologyProject (ISCCP)mappedto

theGCM layersindicateanoccurrencedistributionof 16%,26%and58%,respectively,instead.

We thereforemodifiedourcalculationof thethresholdRH for cloud fractionasfollows: In

the standardschemedescribedearlier, the thresholdRH for the lowest layer is basedon implied

lifting over the layer depth,which is only appropriateif the lowest layer is dry convectivewith

respectto layer 2, i.e. if there are subgridvertical motions that extend over a full layer. In

NEWCLD-R,the full layerthicknessis usedto calculatethethresholdRH only if layer 1 is unstable

with respectto thenext higherlayer. In all othercases,the implied subgridlifting only goesfrom

the bottom of the layer to a height Z determinedby the degreeof stability, as follows: If the

Richardsonnumberbetweenlayer 1 and layer 2 (Ri_2)< 1 (an approximate upper limit for small-

scale turbulence in the model of Cheng et al. 2001), then

Ri12 < 0.25 =_ Z = top height of layer 1 (Zl)

0.25 < Ri_2 < 1 _ Z = interpolated height between Zl and midpoint of layer 1 (Zm)

Ril2 "- 1 =:_ Z = Zm

If Ri12> 1, a similar calculation is performed for Ri between the surface air layer and layer 1 (Risl),

such that

Ris! < 0.25

0.25 < Ri sl < 1

Ri_! > 1

_Z= Z_

=_ Z = interpolated height between Zm and the surface layer height (Z0)

=,Z=Zo

The prescribed threshold RH for all higher layers is decreased (set at 0.57) at the same time so as to

produce a total cloud cover and planetary albedo roughly equivalent to those in CTRL-R. The net

effect of the parameterization change is to reduce cloudiness in layer 1 under more stable PBL
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conditions and to increasecloudinessin higher layers. The resulting cloud top distribution in

NEWCLD-R is 26%, 43% and 31%, respectively, in better agreement with the ISCCP data. The

remaining model-data discrepancy is at least in part an ISCCP bias caused by inaccuracies in its

input humidity profiles, which cause it to overpredict cloud height by 60-80 hPa in marine stratus

regions (Wang et al. 1999).

(c) NEWCLD-M-7.5: This scheme differs from NEWCLD-R only in that it allows for the MIE as

well as the RIE. To evaluate the MIE, an autoconversion parameterization from Tripoli and Cotton

(1980) (hereafter referred to as TC) is implemented. Here, autoconversion does not occur unless the

in-cloud liquid water mixing ratio ql exceeds a certain critical limit qcrit defined as

qcrit= (4 _ t71 r3rit N)/(3 p) (2)

where re,it is the critical value of the droplet radius that would initiate precipitation and p is the air

density. The autoconversion rate is then given by

where H is the Heaviside function, EAU is the droplet collection efficiency set to 0.55, g is the

acceleration due to gravity and e is the dynamic viscosity of air. High values of N increase the

threshold limit and also decrease Q. Low values of refit result in increased precipitation and thus a

smaller MIE. Values generally used in different climate models vary from 4.5 to 10 I.tm (Rotstayn

1999; Boucher et al. 1995; Rasch and Kristjansson 1998). In NEWCLD-M-7.5 we assume refit = 7.5

lma.
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(d) NEWCLD-M-5.0: This experiment is identical to NEWCLD-M-7.5 but with rc_it = 5.0 lain,

which enhances the autoconversion rate and thus reduces the importance of the MIE.

(e) NEWCLD-M-5.0-P: The fu'st-order rate loss parameterization in the stratiform in-cloud

scavenging scheme depends on the amount and areal coverage of precipitation in the cloudy part of

the grid box. The baseline model assumes that the fraction of the grid box that is precipitating

equals the product of the sub-grid cloud areal fraction and the ratio of precipitating to total

condensed water (Koch et al. 1999). Thus, in dense clouds, most of the cloud area precipitates and

participates in scavenging below. This is probably an overestimate, based on the satellite analysis of

Lin and Rossow (1997) who find that only -5% of pixels between 50S and 50N contain

precipitation. In NEWCLD-M-5.0-P we assume that precipitation occurs in only 10% of the cloudy

area. This reduces scavenging and thus increases aerosol concentration. This probably represents a

lower limit for the role played by precipitation, but it serves as a useful sensitivity test for the

resulting radiative impact of a process not generally associated with radiative issues.

4. Results

(a) Aerosol mass distribution

The aerosol column burdens for the PD and PI aerosol sources for the 5 model runs are

listed in Table 3. Detailed comparisons of sulfate and OM distribution with observations for a

model version similar to CTRL-R can be found in Koch et al. (1999) and Koch (2001). Although

the magnitudes of the column burden differ, all 5 simulations have similar horizontal distributions

and vertical profiles. As one example, we show the present-day aerosol mass distributions in _tg m 3

for sulfate, OM and sea-salt for January and July for model layer 1 (P-959 hPa) for the NEWCLD-

M-5.0-P run in Fig. I. Figure 2 is similar to Fig. 1 but shows the vertical distribution of the mass
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(106 kg for sulfateandOM, and 107kg for sea-salt).Sulfateconcentrationsarethe highestduring

summerover theNH continentsdueto increasedoxidantavailability, whereastheyarehigherover

theSH oceansin summerdueto the highernaturalburdenin summer.The model,similar to other

modelswith prognosticH202,hasa somewhathigher SO2burdencomparedwith modelsusing

fixedH202dueto depletionof the in.cloudoxidantin pollutedregions.ThenaturalDMS sourcefor

sulfateis low comparedto observations(andothermodels)in remoteregions. This is duein part to

weakerthanobservedGCM winds,andto theuseof a low sea-to-airtransferratefor DMS. Because

of this, all the sulfur speciesover the remoteoceanstend to be lower thanobserved. Koch et al.

(1999) found the sulfatesurfaceconcentrationson landto agreewell with observations;however,

thesulfateconcentrationsin thefreetroposphereabovecontinentsmaybesomewhatexcessive.

OM concentrationsaregreaterthan sulfate in the SH due to the larger biomassburning

source.Massconcentrationsfor OM arehigher thansulfatemassin thefirst layer, thoughtheOM

column burdenis much lower. This is becauseOM hasonly a surfacesource,while sulfate is

formedonly after oxidationof theSO2precursorthat is oftentransportedto higherlayers. Model

OM concentrationsarelower thanobservationsin thePacific andArctic but not over the Atlantic

(Koch2001).

Sea-saltconcentrationsarehigherover the high latitude oceansduring the winter months

dueto the strongerwind-speedsthere. For sea-salt,comparisonis performedwith respectto the

sodiumcontent(assumingsodiumcontentto be0.3061that of sea-salt). Observationsand model

simulationsof sodiumcontentfor 5 locationslisted in Gonget al. (1997b)for NEWCLD-M-5.0-P,

(which hasthe highestsea-saltconcentrationof all the experiments)areshownin Fig. 3. Model

simulationsarein fairly goodagreementanddocapturetheseasonalityin thedistribution.

(b) Evaluation of cloud droplet number concentration
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Since our prediction of N depends on the concentrations of 3 aerosol species and varies with

the implied cloud turbulence strength, it is instructive to compare the resulting N-sulfate

relationship to field measurements with simultaneous N and sulfate observations. Data for the land

points are from NE America (Leaitch et al. 1992), SE US (Menon and Saxena 1998) and the United

Kingdom (UK) (Roelofs et al. 1998). Those for the ocean points are NE Atlantic (Leaitch et al.

1996), Puerto Rico (Novakov et al. 1994) and Tenerife (Borys et al. 1998). Most measurements

were taken during summer with two exceptions: the Novakov et al. (1994) data set also included

cases from March-April, and the NE American data set included winter and fall measurements.

Main differences between winter/fall and summer measurements are stronger updrafts, higher cloud

bases and higher N during summer and lower median sulfate values for winter, due to the lower

cloud bases and mixing heights, which could lead to higher surface concentrations (Leaitch et al.

1992). The N predicted from the NEWCLD-M-5.0-P model run as a function of sulfate mass along

with the observed N-sulfate relationships are shown in Fig.'s 4 and 5 for the land and ocean

locations, respectively. Hourly averaged model values of N and sulfate were sampled 4 times

during the day-time in July for model grid points and layers closest to the observational areas and

altitudes.

Model sulfate values are within the range of observations for NE America, the UK, and

Puerto Rico but are higher than observed for the SE US and the NE Atlantic. Model N and sulfate

values are systematically underestimated over Tenerife. The underprediction of N is probably

related to an underestimate of OM simulated by the model there as well, though the sensitivity to

sulfate appears to be similar to observations. For Puerto Rico, observations are limited and the

sensitivity of N to sulfate appears low (Novakov et al. 1994). Furthermore, the data suggest that

OM dominates sulfate over this region, though the model prediction is the opposite. Differences in

slopes between model and observations are within 15% for the combined land locations, but the
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model systematicallyoverestimatesthe slope over oceanrelative to the available data. The

discrepancyis primarily dueto ourunderpredictionof N overTenerife,andtheNE Atlantic points,

sinceour regressionutilizesdatafrom Leaitchet al. for this locationthatdo not measureall species

of OM. Consideringthe different spatialscalesof the model and dataand the limited sampling

time, the generaltrendis fairly well simulatedusingthe diagnosticapproach,especiallyover land.

The strongcorrelationbetweenN andsulfateindicatedby the model in mostregionssuggeststhat

thevariability in N is underestimated.This is notsurprisinggiventhe strongcorrelationbetweenN

and sulfatein the Tenerifeobservationsthat dominatesthe data-setusedto derive (la) and (lb).

SinceOM is probablyunderestimatedin thedata-set,N is moredependentonsulfateanda stronger

correlationis exhibitedbetweenN andsulfate. On theotherhand,correlationsin the observations

areexpectedto be lower than thosein themodel,giventhesignificantobservationalerrorsandthe

smallspatialscalessampled.

(c)Aerosol indirect effect

Table 4 lists the global mean AlE values, and their partitioning by surface type and

hemisphere, for all 5 simulations. Included in the AlE is the relatively small (-0.1 W m 2)

longwave contribution. The spatial distributions of annual mean AIE are shown in Fig. 6. Changes

in low cloud cover (ALCC) and liquid water path (ALWP) from PI to PD in the 5 experiments are

also listed in Table 4.

Our global mean AlE values range from -1.55 to -4.36 W m "2, within the range of results

reported for other GCMs but generally somewhat higher than typical values in previous studies.

We also include in Table 4 an additional estimate for the AlE based on the difference in net

radiation at TOA and the direct effect (for both clear and cloudy skies), referred to as NR-DE (Ghan

et al. 2001a). The AlE is estimated from the difference in NR-DE between simulations with PD
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aerosolsandthatwith PI aerosols.The two AlE estimates differ by less than -0.3 W m "2. Neither

estimate of the AIE is exact, because in a column in which both cloud and aerosol increase, the

change in reflection of sunlight by the aerosol is partly due to the change in aerosol itself and partly

due to the cloud-induced change in the availability of sunlight for the aerosol below (above) cloud

to scatter. This can be counted as either part of the direct effect or the AlE and results in ambiguity

in the AIE estimation. The CRF approach has the disadvantage that the sum of the direct and

indirect effects does not exactly equal the change in net radiation, but it has the advantage of

evaluating the cloud radiative impact in the realistic background in which it exists. The NR-DE

approach gives an AlE and DE whose sum is exactly the change in net radiation, but it

overestimates the AlE since the net radiation change due to clouds is estimated for an atmosphere

without aerosols. Both methods are only approximate and the differences between them are small

compared to the overall uncertainty in the AlE estimates.

A comparison of Tables 3 and 4 indicates that the AlE is more sensitive to the PI aerosol

distribution than to the anthropogenic aerosol increase (with the one exception - NEWCLD-M-5.0).

Since the PI burden in these runs varies only because of cloud physics assumptions, it is also clear

that the AlE is quite sensitive to uncertain aspects of cloud parameterization. In common with other

models, the AlE is much stronger in the Northern Hemisphere than in the Southern Hemisphere,

and the parameterization changes we test have little effect in the Southern Hemisphere in all but the

most sensitive simulation. In all 5 simulations the AlE is stronger over land than over ocean, a

feature we have in common with some previous investigators but not others. The differences

between our results and previous workers are largely due to differences in the definition of the

background aerosol and extent of aerosol-cloud interaction, as follows:

(a) Our AlE is a true difference between simulated PD and PI conditions for all included

aerosol types. Some previous studies prescribe an elevated continental background aerosol (to
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mimic otheranthropogenicaerosols)andsimulateonly theAlE dueto anthropogenicsulfate,which

lowers the global AlE and shifts the maximum from land to ocean. Others use an N-sulfate

regressionwith different slopesover landandocean,which implicitly accomplishesthesamething.

Othersprescribea lower limit for N, which can shift the peak AlE either onto land or ocean

dependingonwherethelower limit is assumedto apply.

(b) Somemodelsuseoffline monthlymeansulfatefieldsto alter cloudpropertiesbut donot

allow thecloudsto feedbackon the aerosoldistribution. Our coupledmodel is fully interactive,

and thus the global aerosolburden in the PI simulationscan increaseor decreasedependingon

cloudsourcesandsinksof aerosol.In general,the lower thePI aerosolburden,the largertheAlE.

(c) Sincethe continentalPI aerosoldistribution cannotbe observed,different assumptions

aboutbackgroundsourcescansignificantlyinfluencethe resultingAlE. For example,our control

run assumesa 10%yield of OM from terpenesandproducesanAlE of -1.82W m"2. A sensitivity

test using a 5% yield instead reduces the background aerosol burden by 50% and increases the AlE

to -2.56 W m 2.

(d) The GISS GCM surface winds are weaker than observed, and hence the model

underestimate the sea-air transfer coefficient magnitude and the resulting DMS source when the

Liss and Merlivat (1986) parameterization is employed. This may imply that our AlE over ocean is

overestimated.

Comparing CTRL-R and NEWCLD-R illustrates the effect of the change in vertical cloud

distribution. Shifting the low clouds upward by only 4 mb on average (but with a 10% absolute

decrease in low cloud contribution by the lowest layer) by itself reduces the magnitude of the AlE

by 0.3 W m 2. This occurs both because fewer of the clouds in NEWCLD-R are colocated with the

altitude of largest anthropogenic aerosol increase, and because clouds in the lowest layer are most

likely to rain, which explains the slightly lower aerosol burden in CTRL-R. Changes in LCC (0.15,
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0.22%) andLWP (-1.1, -0.3 g m "2) in these runs are due strictly to feedbacks, since they include

only the RIE, and are thus much smaller than those in the "M" runs, which allow for the MIE.

Inclusion of the MIE (NEWCLD-M-7.5) significantly increases the AlE relative to

NEWCLD-R. However, the difference between these two cannot be interpreted as the magnitude of

the MIE itself, because qualitatively different autoconversion schemes were used in the two

experiments. In general, the TC parameterization has much stronger autoconversion rates at typical

cloud LWC values than the scheme used in Del Genio et al. (1996). As a result, the PI aerosol

burden is very low in NEWCLD-M-7.5. This, combined with the actual MIE, explains the

exceptionally large overall AIE in this experiment. The runs with the TC scheme have annual mean

global liquid water path (LWP) values of 75-80 g m "2, much closer to the satellite-retrieved value of

81 g m 2 reported by Greenwald et al. (1993) than the 118 g m 2 value in NEWCLD-R. The PI-to-

PD increase in LWP (8 g m "E)in NEWCLD-M-7.5 is about 10%, more than twice as large as the 4%

relative (1.2% absolute) increase in LCC. Thus, the MIE in our GCM is due to both cloud lifetime

and in-cloud liquid water increases.

Since the TC scheme was designed for models that resolve clouds, the critical radius that

initiates autoconversion is not a very physically meaningful parameter in the context of a global

model which is intended to represent an ensemble of clouds and a distribution of LWC values

(Rotstayn 2000; Pincus and Klein 2000). NEWCLD-M-5.0 tests the sensitivity of the AlE to this

effectively free parameter. By reducing the critical radius, we make autoconversion easier and thus

limit the magnitude of the MIE. The resulting decrease in magnitude of the AIE is dramatic (-4.36

to -1.84 W m2), not only because the anthropogenic changes in LCC (1.18 to 0.33%) and LWP (7.8

to 0.90 g m -2) are smaller, but also because the efficient rainout causes the anthropogenic increase in

aerosol burden to be much less in this experiment than in the other four.
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The aerosolburden in NEWCLD-M-7.5 and especiallyNEWCLD-M-5.0 is significantly

lower thanthat in theearlier versionof thecoupledmodelanalyzedin detailby Kochet al. (1999),

which did not includethe AIE. Although the actualglobalaerosolburdenis unknown, the earlier

model did comparereasonablywell with point observationsat a varietyof locations.At the same

time, the scavenging scheme in that model assigns too large a precipitating area of clouds compared

to satellite observations. NEWCLD-M-5.0-P thus weakens the scavenging to offset the effect of the

stronger autoconversion in the TC scheme. The resulting PI aerosol burden is much larger, and the

PD burden is much closer to that in Koch et al. (1999). Thus, even though the PD aerosol burden is

the largest of all 5 experiments and both indirect effects are included, the total AIE is only -2.41 W

m 2. Changes in LCC (0.6%) and LWP (2 g m "2) are intermediate between the other "M"

experiments.

5. Comparisons with Satellite Data

Han et al. (1994, 1998a, b, 2000) have retrieved a variety of parameters that are potentially

diagnostic of aerosol-cloud interactions from global satellite datasets. In this section we compare

analogous model parameters to these retrievals to determine whether the satellite diagnostics

constrain the AIE. Model outputs were processed in the same way as were the satellite retrievals,

with only clouds with tops wanner than 273 K included and parameters calculated either at cloud

top or as column integrals as appropriate. Table 5 summarizes the global mean results for July, in

increasing order of the simulated AlE magnitude, while Figures 7-9 show the global distributions of

each parameter for the observations and for three simulations that span the range of AIE values in

the GCM. Impressions gained from January comparisons (not shown) were generally similar.

(a) Droplet effective radius and column number concentration
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Figure 7 shows the distributions of refr (left) and column droplet number concentration No.

Particle size is proportional to (LWC/N) 1/3 and column number concentration is the vertical integral

of N, so we might expect changes in rat and Nc from one experiment to another to be negatively

correlated. Table 5 shows that with the exception of the extreme high AIE experiment NEWCLD-

M-7.5, this is the case. In the other 4 simulations, N¢ is primarily controlled by the aerosol burden

(compare with Table 3). In general refr is underpredicted by the model. In part, this may be

explained by the fact that the satellite-retrieved radius is characteristic of only the top x -- 1 of the

cloud. Since LWC increases with height in non-precipitating clouds, the cloud top droplet sizes

tend to be larger than the mean throughout the cloud. The GCM's "cloud top" value is the mean for

the highest cloud layer, which in many cases is the entire depth of the cloud.

The GCM does produce the sense of particle size differences over land and ocean. Its NH-

SH differences are much greater than the satellite-retrieved values, in part because the model

aerosol impact appears to be too large over NH midlatitude oceans, and in part because the satellite

retrievals include some regions of unusually small particle sizes over SH desert regions that are

probably dust contamination. Nc is somewhat overestimated over NH land and slightly

underestimated over SH land in most of the simulations. Several of the runs produce ocean

concentrations similar to those observed, but the observed ocean minima tend to be at low latitudes,

while the model ocean minima are in southern midlatitudes. The AIE does not vary consistently

with either refr or N¢, so although they represent one component of a model validation strategy,

neither parameter by itself can be considered a diagnostic of the AIE.

(b) Albedo-particle size correlations

Since the AIE is largely a response of cloud albedo to aerosol-induced changes in cloud

droplet number and size, it is potentially more fruitful to relate albedo variations to changes in either
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quantity than to utilize the mean quantities themselves. Han et al. (1998a) correlated albedo to

droplet effective radius in the hope of finding regional signatures of the AlE. They found the

expected negative relationship (brighter clouds with smaller particle sizes) only for the optically

thickest ('t > 15) 15-20% of all low clouds. For the majority of low clouds, albedo is positively

correlated with particle size. This occurs because for thinner clouds, dynamically-induced changes

in LWC control particle size, hiding any AlE in such clouds amidst the much larger natural

variability. For the thicker clouds, on the other hand, the onset of precipitation may limit LWC

increases and allow the weak AlE signal to emerge (Nakajima and Nakajima 1995; Lohmann et al.

2000).

Cloud albedo (A) in the GCM was estimated from the calculated optical thickness using A =

(1 - g) _'/(2 + (1 - g) _'), where g = 0.85 is the asymmetry parameter for single scattering. The GCM

produces albedo-particle size correlations for the thinner clouds that are quite close to those

observed (Table 5; Fig. 8, left). There is little variation from one simulation to another, supporting

the idea that the correlation for these clouds is mostly due to natural variability and not aerosol. The

GCM also simulates much smaller correlations overall and some regions of negative albedo-particle

size correlation for the thicker clouds, although in no case is the GCM global mean correlation for

the thicker clouds negative as is true for the satellite data. Even though the lowest albedo-raf

correlations occur in the run with the highest AlE and the negative correlations in all runs are a lot

more pronounced in clouds in model layer 1 where the aerosol effect is the strongest, an inverse

relation between albedo-reff and the AlE is not observed in Table 5. Thus, although this satellite

relation may offer some evidence of the AlE, it is apparently not sensitive enough to distinguish

between large and small AlE simulations in our model.

(c) Column susceptibility
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Twomey (1991)first suggestedthat the albedosof cleanercloudswith smallerN aremore

susceptibleto changesin N thanarecloudswith largerN. If LWC, cloud physicalthickness,and

the dropletsizedistribution areheldconstant,then the susceptibilitydA/dN = A(1-A)/(3N). This

relationshiphasbeenusedto evaluatethe sensitivity of clouds to aerosolsin different regions

(TaylorandMcHaffie 1994;PlatnickandTwomey 1994). N is not observedby satellites,but Hart

et al. (2000)haveretrievedananalogouscolumncloud susceptibilitydefinedfor constantLWP as

CS_= dA/dNc = A(1-A)/(3Nc). Furthermore, since LWP and size distribution need not remain

constant, Han et al. provide another estimate of column susceptibility CS2 = AA/ANc by regressing

A vs. No.

Figure 9 shows both versions of column susceptibility for thinner clouds, while Table 5

indicates the global mean values for thinner and thicker clouds separately. Excepting once again

the extreme case NEWCLD-M-7.5, differences in global mean CSI values are inversely correlated

with differences in Nc, and thus CSI provides no independent information about cloud-aerosol

interactions. Likewise, model-data differences in the global distribution of CS! mimic the

differences already described for Nc.

To estimate CS2 in the GCM, A and N¢ values were sampled every 6 hours to capture

synoptic variability, and gridboxes with fewer than 10 points of warm cloud occurrences over the

month were excluded from the regression analysis. Like Hart et al., we find that susceptibilities are

noticeably lower when LWP is not assumed fixed, although our susceptibilities are significantly

smaller than those retrieved by Han et al. in 3 of the 5 simulations. The GCM especially

underestimates susceptibility over the oceans, and although the model produces some gridpoints

with negative susceptibilities, they are randomly scattered over the oceans rather than being

confined to the eastern ocean marine stratus regions as in the satellite data. Susceptibilities are

• higher for the runs that include the MIE than for the runs that simulate only the RIE. Also, the
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decreasein CS2from thin to thick clouds (as in observations)are only seenfor the "M" runs,

suggestingthat microphysicsplays a bigger role in determiningcloud susceptibility than does

radiation. Furthermore,for the3 runs that include theMIE, both susceptibilitiesincrease(for the

optically thin cases)astheaerosolburdendecreases,aswemight expect,but this is not a predictor

of theresultingAIE becauseof differencesin PI aerosol.

6. Discussion and Conclusions

Our suite of simulations differs from those performed by previous workers in that we

emphasize ser]sitivity of the AIE to uncertain cloud parameterization elements (formation,

autoconversion, scavenging) that affect major source and sink terms in the aerosol budgets. We did

not perform any tuning, so our global aerosol burdens vary considerably among the different

simulations (Table 3). The global burdens of all aerosol types are poorly constrained, since only

point observations in some parts of the world are available, with little vertical profile information.

The sulfur burdens in existing models range over about a factor of two (Koch et al. 1999). Two of

our simulations (NEWCLD-M-7.5, NEWCLD-M-5.0) have very low aerosol burdens that are

probably inconsistent with available data, but the other three are representative of the range found in

other models.

Of even more importance is that the PI aerosol distribution is and will remain completely

unconstrained by observations. The combined uncertainty in PD and PI aerosol burden is the single

largest uncertainty factor for the AIE in our model. As a crude indicator of their impact, we plot in

Fig. 10 the AIE vs. the ratio of PD to PI sulfa?: _ burden. (A similar plot using PD and PI sulfate +

OM gives similar results, since sulfate is more abundant and dominates the regression we use.) In

our limited sample of model runs, the magnitude of the AIE is strongly correlated with the

fractional enhancement of aerosol burden by anthropogenic activities. Thus, we can
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weaken/strengthen the AIE by increasing/decreasing the PI burden, and to a lesser extent by

decreasing/increasing the PD burden.

The sensitivity to the PI burden may partly explain the absence of any weak AIE results in

our set of simulations. Specifically, the GISS GCM's DMS source is significantly weaker than that

of other models because of the GCM's weak surface winds; Koch et al. (1999) report a 42%

increase in the DMS source when the model is forced by SSM/I winds instead. Applying such a

change to Fig. 10, we anticipate that our AIE might decrease in magnitude by a few tenths of a W

m 2 if this were corrected. Other sources such as the OM yield from terpenes increase the

uncertainty. Even more importantly, the microphysical processes that remove aerosols in GCMs

can drastically alter the aerosol burden, and proper representations of these processes that account

for subgrid LWC variability do not exist (Pincus and Klein 2000). It is clear that using offline non-

interactive aerosol fields to force a GCM misses important feedbacks of the clouds on the aerosol

field.

Since it is impossible to specify the PI aerosol burden accurately and uniformly across

models, GCM estimates of the AIE can be expected not to converge as long as PI conditions are

used as the baseline. Since the total AIE from the start of the Industrial Revolution is of less

practical importance than the recent and future rate of increase of the AIE, we suggest a shift in

model strategy that focuses on simulating the change in AIE over the period for which the most

reliable observations exist. If the NASA Global Aerosol Climatology Project can generate an

aerosol climatology for the past two decades with reasonable accuracy, this time period might serve

as a better standard for different GCMs to operate on common ground, so that remaining

disagreements might more easily be traced to differences in model physics. Such a strategy might

enhance the usefulness of satellite products as well. None of the tested satellite diagnostics

constrains the AIE in our simulations (Table 5). However, much of the simulated variability in AIE
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in ourmodel resultsfrom PI aerosolburdenvariations,which areunrelatedto the currentclimate

aerosol-cloudsensitivitycapturedin thedata.

Of moreconcernfor observationallyconstrainingtheAIE is the fact that aerosolsappearto

havea subtleeffecton cloudsthat is largelyobscuredby naturalmeteorologicalvariability. Thus,

unlike theglobalmeangreenhousegasor directaerosolforcing,neitherof which is greatlyaffected

by dynamics,it will never be possibleto simply estimatethe global AIE by using "observed"

aerosolmodificationsof cloudsasinput to a 1-dimensionalradiativetransfercalculation. What is

neededis to combinethe existing satelliteproductswith meteorologicalanalysisfields to isolate

specificdynamicalregimeswithin which thecloudvariability dueto aerosolsmight bedetected.A

similar analysisappliedto aGCM might thenbeableto validatetheGCM'sprocessrepresentations,

andsucha modelmight thengive a credibleestimateof theAIE. In otherwords,theAIE, which is

usually groupedwith climate forcings, is moreproperly treatedas a feedbackthat can only be

estimatedwithin themodelcontext.

Our studyalsohighlightssomeneededobservations.Sinceaerosolconcentrationsdecrease

sharply with height, it is important to accuratelysimulatethe detailed vertical distributions of

clouds. Coarsevertical resolutionmodelssuchasthe one we usemust clearly be replacedwith

versionsthat adequatelyportray inversions,decoupledboundary layers, and cloud turbulence

strength. Observationsto validatesuchmodelsare lacking, though. ISCCP gives a first-order

global estimateof low cloud heightbut apparentlycontainsbiasesin marinestratusregions(Wang

et al. 1999). Colocatedverticalprofilesof cloudandaerosolat a numberof locationsfrom surface

lidarsandradarsmayoffer thebesthopeof gettingsuchinformation. Futurefield experimentscan

be justified, but only if they sampleclimate regimesunobservedthus far, especially in regions

whereotheraerosolsdominatesulfate,and only if they measureN and all relevantaerosolsand

includesupportinglarge-scaleandturbulence-scalemeteorologicalinformation.
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Finally, it is instructive to compare the status of AIE simulations tO that of cloud feedback.

The range of cloud feedback estimates broadened considerably 10-15 years ago as new physics was

introduced that increased the number of possible feedback loops. Only recently have observations

begun to narrow that range. Diagnostic cloud schemes ultimately gave way to prognostic cloud

water parameterizations, not just because they represent better physics but because they allow

GCMs to predict not only sources but also important sinks of cloud water, which require the

memory of the previous cloud state. AIE simulations, by comparison, have existed for fewer than

10 years. The range of estimates has recently expanded, and no observational constraints have yet

been identified that narrow the range. Prognostic schemes have begun to appear, but their ultimate

fate will depend on whether droplet concentrations and particle sizes on GCM resolved space and

time scales can be shown to deviate in important ways from equilibrium with the simulated aerosol

field. For the foreseeable future, diagnostic approaches offer comparable predictive capability for

estimates of the AIE.
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Table 1. Chemicalspeciesand sourcesfor sulfate,organicmatter (OM) and sea-saltaerosols.

ANTH andNATL refer to anthropogenicandnaturalaerosolsources,respectively.

Species Sources References

ANTH sulfate SeasonallyvaryingGEIA SO2 emissions

Aircraft source

Biomass burning

Benkovitz et al. 1996

Baughcum et al. 1993

Spiro et al. 1992

NATL sulfate DMS Oceanic source

Non-eruptive volcanic sources

Kettle et al. 1999; Liss and Merlivat

1986

Spiro et al. 1992

ANTH OM

NATL OM

Fossil fuel and biomass burning

Terpene emissions

Liousse et al. 1996; Cooke et al.

1999; Penner et al. 1993

Guenther et al. 1995

Sea-salt Ocean Gong et al. 1997a
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Table 2. Designationof experimentsused for model simulationsof the aerosolindirect effect

(AIE). Also includedis the length of model runs. The different columnsindicatethe sensitivity

testsconductedto evaluatethe AIE. D96 refers to Del Genioet al. (1996),TC80 to Tripoli and

Cotton(1980),andK99 to Kochet al. (1999).

Experiment No. of AIE Cloudvertical Autoconversion Scavenging

years distribution

averaged

CTRL-R 5 1st f(layer 1 D96 K99

thickness)

NEWCLD-R 5 1st f (Ri) D96 K99

NEWCLD-M-7.5 2

NEWCLD-M-5.0 2

NEWCLD-M-5.0-P 5

1st and f (Ri)

2nd

1st and f(Ri)

2no

1st and f (Ri)

2 nd

TC80 [r:,t =7.5 pro] K99

TC80 [refit =5.0 I.trn] K99

TC80 [rmt =5.0 l.tm] Decreased

scavenging
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Table 3. Globally averaged annual aerosol column burden (mg m 2) for sulfate, organic matter

(OM) and sea-salt for present-day (PD) and pre-industrial (PI) emissions. Also included is the

difference (A) between the PD and PI simulations.

Experiment Sulfate OM Sea-salt

PD PI A PD PI A PD PI A

CTRL-R 3.75 0.96 2.79 1.90 0.23 1.67 7.64 7.56 0.08

NEWCLD-R 4.02 1.14 2.88 2.15 0.29 1.86 7.91 7.92 -0.01

NEWCLD-M-7.5 2.66 0.42 2.24 1.57 0.14 1.43 4.16 3.70 0.46

NEWCLD-M-5.0 1.11 0.30 0.81 0.90 0.12 0.77 3.53 3.59 -0.06

NEWCLD-M-5.0-P 5.03 1.05 3.98 2.46 0.27 2.19 9.36 9.02 0.34
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Table 4. Globally averagedannualmeansof the aerosolindirect effect (AIE) evaluatedby the

model from the differencein cloudradiativeforcing. Also includedare thenorthernand southern

hemisphere(NH and SH, respectively)andland and oceanaverages.(NR-DE) refers to the AlE

calculatedas the differencebetweennet radiation and the direct aerosoleffect. Global annual

changesin low cloud cover (ALCC) and liquid waterpath (ALWP) betweenpresent-dayand pre-

industrialemissionsarealsogiven.

Experiment AIE (W mz)

Land Ocean NH SH Global

NR-DE

(W m "2)

Global

AIX_C ALWP

(%) (g m 2)

CTRL-R -3.13 -1.31 -2.56

NEWCLD-R -2.39 - 1.22 - 1.82

NEWCLD-M-7.5 -7.83 -2.99 -6.16

NEWCLD-M-5.0 -2.91 - 1.42 -2.39

NEWCLD-M-5.0-P -4.08 - 1.75 -3.41

-1.09 -1.82

-1.27 -1.55

-2.56 -4.36

-1.29 -1.84

-1.41 -2.41

-1.95 0.15 -1.10

-1.72 0.22 -0.30

-4.68 1.18 7.80

-1.81 0.33 0.90

-2.53 0.56 1.90
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Table 5. Globally averagedJuly means for rcff, No, A-rcff correlation, and column cloud

susceptibility using the constant LWP assumption (CS1) and column cloud susceptibility using the

regression method (CS2) i.e. when LWP varies. Model results are compared to observations from

Han et al. (1994; 1998a, b; 2000). Also given are the AIE annual means.

Model/Obs. AIE reff Nc A-rcu

fw (_'n) (106

m -2) cm -2)

CS1 CS2

(10 s cm 2) (10 -s cm 2)

't<15 x>15 't<15 x>15 't<15 x>15

NEWCLD-R - 1.55 9.79 4.97

CTRL-R - 1.82 10.76 3.96

NEWCLD-M-5.0 - 1.84 11.26 2.07

NEWCLD-M-5.0-P -2.41 6.75 6.03

NEWCLD-M-7.5 -4.36 10.36 4.68

0.33 0.09 7.84 4.18 0.32 0.75

0.31 0.07 8.75 6.05 0.76 0.77

0.36 0.15 14.13 13.63 4.74 0.10

0.36 0.12 5.00 3.19 1.09 0.17

0.34 0.03 11.98 6.35 3.01 0.40

Obs. 11.44 4.43 0.30 -0.19 8.29 2.70 3.19 1.15
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List of Figures

Fig. 1: Global distribution of sulfate, organic matter (OM) and sea-salt mass (_tg m "a) in model layer

1 for January and July for the NEWCLD-M-5.0-P model run. Global annual averages are

listed on the right hand side.

Fig.2: Vertical distribution of sulfate (106 kg), organic matter (OM) (106 kg) and sea-salt (10 v kg)

mass for January and July for the NEWCLD-M-5.0-P model run.

Fig.3: Comparison between model simulated sodium content (obtained from the sea-salt

concentrations) and observations at five locations for January and July for the NEWCLD-M-

5.0-P model run.

Fig.4: Regression of the cloud droplet number concentration (N) (cm 3) predicted from the

NEWCLD-M-5.0-P run versus the simulated sulfate mass (_tg m "3) for July for all land

locations (topmost left panel) and for the three individual land locations. Also shown are the

N-sulfate regressions from observations. The solid and dashed lines are the regression

curves for model and observations, respectively.

Fig.5: Same as Fig.4 but for ocean locations.

Fig.6: Global distribution of the aerosol indirect effect (ALE) (Wm -2) for the 5 model runs listed in

Table 2. Global annual averages are listed on the right hand side.

Fig.7: Global distribution of model simulated cloud droplet effective radii reff (l_rn) and column

number concentration (No) (106 cm "2) for 3 of the 5 model runs listed in Table 2. ISCCP

observations from Han et al. (1994, 1998b) are also shown (topmost panels). Global

averages are listed on the right hand side.

Fig.8: Global distribution of the correlation coefficient between cloud albedo and cloud droplet

effective radii (reff) for optically thin ('_ _< 15) and thick (_ > 15) clouds for July for 3 of the 5

42



model runs listed in Table 2. ISCCP observations from Hart et al. (1998a) are also shown

(topmost panels). Global averages are listed on the right hand side.

Fig.9: Global distribution of the column cloud susceptibility (10 s cm 2) calculated using the constant

liquid water content (LWP) assumption, referred to as CS1, and under varying LWP

assumption, referred to as CS2, for optically thin (x < 15) clouds in July for 3 of the 5 model

runs listed in Table 2. ISCCP observations from Han et al. (2000) are also shown (topmost

panels). Global averages are listed on the right hand side.

Fig. 10: Model simulations of the aerosol indirect effect (W m 2) versus the ratio of present-day (PD)

to pre-industrial (PI) sulfate aerosol burden for the 5 model runs listed in Table 2 and an

additional sensitivity run (same as the CTRL-R run but with a 50% reduction in the PI

organic aerosol burden).
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